

Welcome to FractPy’s documentation!

This is a Python library to generate fractals of various kinds.

Contents:

	Tutorial: Generating Newton Fractal for a simple function
	Introduction to Fractal

	Installing FractPy

	Using FractPy

	How to
	Create a Model

	Create a Plot

	Create a Zoom Plot

	To Find the Derivative and the Roots

	Explanantion
	Newton Fractal

	Reference
	Bibliography

	Source Code

Indices and tables

	Index

	Module Index

	Search Page

Tutorial: Generating Newton Fractal for a simple function

Introduction to Fractal

A fractal is never ending pattern. Fractals are a type of mathematical
shape that are infinitely complex. They are created by repeating a
simple process over and over in an ongoing feedback loop.

In essence, a Fractal is a pattern that repeats forever, and every part
of the Fractal, regardless of how zoomed in, or zoomed out you are, it
looks very similar to the whole image. A shape does not have to be
exactly identical to be classified as a Fractal. Instead shapes that
display inherent and repeating similarities are the main requirement
for being classified as a Fractal. [Falconer1990]

Fractals are found all over nature, spanning a huge range of scales. We
find the same patterns again and again, from the tiny branching of our
blood vessels and neurons to the branching of trees, lightning bolts,
snowflakes, river networks and even the clustering of galaxies.
Regardless of scale, these patterns are all formed by repeating a simple
branching process.

[image: ../_images/tutorial.jpg]
Fig: Fractal in nature, geometry, and algebra [Jasser]

For more background information on fractals: [FractalFoundation2009].

Newton Fractal

One way of generating fractals is using Newton-Raphson Method, also known
as Newton Fractal. Newton fractals are fractals created in the plane of
complex numbers. An iteration process with Newton’s method is started at
each point on a grid in the complex plane, and a color is assigned to each
point according to which of the roots of a given function the iteration
converges to. [Sahari2006]

A generalisation of Newton’s iteration is:

\[z_{n+1} = z_n - \frac{f(z_n)}{f'(z_n)}\]

where \(z \in \mathbb{C}\) represents any point in the plane,
\(n \in \mathbb{N}\) represents the number of step, and
\(f(z)\) is a polynomial or transcendental function.

For \(f(z) = z^3 - 1\), the iteration is:

\[z_{n+1} = z_n - \frac{z^3 - 1}{3z^2}\]

Installing FractPy

Let us now see how to plot fractal for this function using FractPy, but
first we need to install it. FractPy requires Python 3.6 or greater, so
assuming you have it, to install FractPy:

	On Mac OSX or linux open a terminal;

	On Windows open the Command prompt or similar

and type:

$ python -m pip install fractpy

Using FractPy

Generating fractals in fractpy can be divided into 2 steps:

	Creating a model

	Generating the fractal

Creating a Model

A model represents the technique being used to generate the fractal,
so generating fractal from Newtons’ method would involve making a
model NewtonFractal which is a class of module fractpy.models,
and then passing the required function in the form str as an
argument during initialisation. The following code shows how to
make a NewtonFractal model for the above function:

>>> from fractpy.models import NewtonFractal
>>> model = NewtonFractal("x**3 - 1")
>>> model
FractPy Model
Type: Newton Fractal
Function: x**3 - 1

Note

For complex values use I (upper case i) instead of commonly used
convention of i. For example: function
\(f(x) = (x - 1)(x + i)(x - i)\) would be passed as
"(x - 1)(x + I)(x - I)".

Generating Fractal

To generate the fractal all we have to do now is call the method plot,
and pass in the axes limits along with the desired resolution of the
image which returns a matplotlib.figure.Figure:

>>> xmin, xmax, ymin, ymax = -2, 2, -2, 2
>>> p = model.plot(xmin, xmax, ymin, ymax, (500, 500))
>>> p.show()

The above code will generate the Newton Fractal for \(x^3 - 1\), in the range
-2 to 2 for both x-axis and y-axis, and the resolution of the image would be
500X500.

This creates the following plot:

[image: ../_images/tutorial_plot.png]

Note

Generating fractal requires some heavy computation so it may take seconds,
or minutes depending on the computing power of the system.

How to

How to:

	Create a Model

	Create a Plot

	Create a Zoom Plot

	To Find the Derivative and the Roots

Create a Model

A model in fractpy is an object which represents the method it is using
to generate fractals.

Note

FractPy currently supports only Newton Fractal method of fractal
generation for polynomial functions with real powers. More methods are
currently in development.

To make a Newton Fractal Model for the function
\(f(x) = (x^2 - 1)(x^2 + 1)\) all we have to do is pass in the
function as str to the NewtonFractal class from module
fractpy.models:

>>> from fractpy.models import NewtonFractal
>>> model = NewtonFractal("(x**2 - 1)(x**2 + 1)")
>>> model
FractPy Model
Type: Newton Fractal
Function: (x**2 - 1)*(x**2 + 1)

Note

For complex values use I (upper case i) instead of commonly used
convention of i. For example: function
\(f(x) = (x - 1)(x + i)(x - i)\) would be passed as
"(x - 1)(x + I)(x - I)".

We can use this model to generate fractals!

Create a Plot

To create plot from the model, we call the method plot, and
pass in the axes limits, along with the resolution of the plot we
want. This returns a matplolib.figure.Figure. To plot a fractal
for the range -2, 2 and -2.5 , 2.5 for x and y-axis respectively
and of resolution (600,900):

>>> p = model.plot(-2, 2, -2.5, 2.5, (600,900))
>>> p.show()

This creates the following plot:

[image: ../_images/howto_plot.png]

Create a Zoom Plot

Creating a simple plot for fractals is pretty boring, especially if
you cannot see the beauty of how it repeats itself.

So fractpy offers a funtionality in which you can dynamically
zoom in any region of the plot. To create such plot we will use the
method zoom_plot which creates two identical panels. Zooming in
on the right panel will show a rectangle in the first panel, denoting
the zoomed region. And as done in plot we will gave to pass in
the initial axes range, along with the resolution of the plot to be
generated, and get the matplotlib.figure.Figure:

>>> p = model.zoom_plot(-2, 2, -2, 2, (200,200))
>>> p.show()

This creates a plot like this, which can be zoomed in:

[image: ../_images/howto_zoom_plot.gif]

Note

This currently does not work in Jupyter Notebook, and has to be
run using a python script.

To Find the Derivative and the Roots

Fractpy has a class Function which can be used to perform basic calculus
operations on a single-variable function. To initialise an object of this
class we pass in the function as type str.

For example to initialise with function \(f(x) = x^4 - 3x^3 + 2x^2 - 9\):

>>> from fractpy import Function
>>> f = Function("x**4 - 4*x**3 + 4*x**2 - 4*x + 3")
>>> f
x**4 - 4*x**3 + 4*x**2 - 4*x + 3

Note

For complex values use I (upper case i) instead of commonly used
convention of i. For example: function
\(f(x) = (x - 1)(x + i)(x - i)\) would be passed as
"(x - 1)(x + I)(x - I)".

To Calculate Roots

Use the method roots, which returns list of the roots:

>>> f.roots()
[1, 3, I, -I]

To Find the Derivative:

Use the method differentiate, which returns the derivative of the function
in the form of a sympy expression:

>>> f.differentiate()
4*x**3 - 12*x**2 + 8*x - 4

Explanantion

	Newton Fractal
	Newton-Raphson Method of Finding Roots

	Using Newton-Raphson Method for Generating Fractal

	Algorithm used in the Code

	Precautions

Newton Fractal

Newton Fractal is generated by iterating Newton-Raphson method of finding
roots in the complex plane. [Sahari2006]

Newton-Raphson Method of Finding Roots

The Newton-Raphson method (also known as Newton’s method) is a way to
quickly find a good approximation for the root of a real-valued function
\(f(x) = 0\) It uses the idea that a continuous and differentiable
function can be approximated by a straight line tangent to it.

To perform a Newton-Raphson approximation, suppose you have a function
\(f(x)\), with derivative \(f′(x)\), and you have an approximation
\(x_0\) to a root of the function. The Newton-Raphson procedure is to
calculate:

\[x_1 = x_0 − \frac{f(x_0)}{f′(x_0)}\]

which is a closer approximation to the root. Typically you would then
iterate this again, and again, until the successive values were extremely
close together, at which point you would conclude that you had a very
good approximation to the actual value \(r\) for which \(f(r)=0\).

The iteration performed is:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]

Using Newton-Raphson Method for Generating Fractal

If we used this method to start iteration at each point on the real-line,
run the iteration until it converged to within tolerance level of a root,
and then colour the starting point according to which root it ended up at,
what we get is a fractal.

But Fractal in 1 Dimension is not that intuitive, so taking this process to
complex plane i.e. performing Newton-Raphson Method at each point in complex
plane and colour that point according to the root to which it converged,
would give us colourful fractals.

Algorithm used in the Code

	Choose a function \(f(z)\), remember how interesting the fractal looks
depends on this choice.

	Find the roots of \(f(z)\) and find the function required for the
iteration i.e. \(\frac{f(z)}{f'(z)}\).

	Choose the range of the complex plane, and divide the x-axis and y-axis
into m and n points respectively (assuming the dimensions of the image
to be generated is (m X n)).

	Run the iteration for each point on the plance with given tolerance and
max number of iterations.

	Assign the colour to each point according to the root to which it
converged.

	Plot the resulting colour for each grid point.

Precautions

	As generating fractals requires some heavy computation (can take minutes
depending on your configuration), it is recommended to start with
generating a low-resolution image and once you are sure everything
works as expected, generate the final high-resolution image.

	The tolerance you choose should be small enough so that if roots lie
really close to one another, the program can correctly assign the colour.

	Choose the initial range of the graph such that it covers almost majority
of the roots, so as to see the interesting things happening, and then
focus on the part you want.

Reference

	Bibliography

	Source Code
	Subpackages

	Submodules

Bibliography

This is a collection of various bibliographic items referenced in the
documentation.

	Jasser

	Jasser, n.d. Fractal in nature, geometry and algebra. [image] Available at: <http://jasser.nl/about/fractal-geometry/> [Accessed 12 April 2021].

	FractalFoundation2009

	Fractal Foundation (2009) Fractal Pack Educators’ Guide. [pdf] Available at: <https://fractalfoundation.org/fractivities/FractalPacks-EducatorsGuide.pdf> [Accessed: 27 March 2021].

	Falconer1990

	Falconer, K., 1990. Fractal geometry: mathematical foundations and its applications. Chichester: John Wiley & Sons.

	Sahari2006

	Sahari, M. and Djellit, I., 2006. Fractal Newton basins. Discrete Dynamics in Nature and Society, 2006, pp.1-16.

Source Code

Subpackages

	fractpy.models package
	Submodules
	fractpy.models.newton module

Submodules

fractpy.function module

A class for performing basic operations on functions.

	
class fractpy.function.Function(function)

	A class for performing basic operations on
given single-variable function. The operations
include finding roots, calculating derivative.

	Parameters

	function (str) – The function of interest (has to be a
single variable function).

	
function

	The function of interest.

	Type

	sympy expression

	
variable

	The variable in terms which the function
is defined.

	Type

	sympy.Symbol

Notes

This class was mainly developed to be used for
fractpy.models.NewtonFractal class.

	
differentiate()

	Differentiates the function.

	Returns

	Derivative of the function.

	Return type

	sympy expression

	
roots()

	Calculate roots of the function.

	Returns

	Roots of the function.

	Return type

	list

fractpy.models package

Submodules

fractpy.models.newton module

	
class fractpy.models.newton.NewtonFractal(func, prec_goal=1e-11, nmax=200)

	A class for plotting Newton Fractal for a given function.

Newton fractals are fractals created in the plane of complex
numbers. An iteration process with Newton’s method (or
Newton-Raphson Method) is started at each point on a grid in the
complex plane, and a color is assigned to each point according to
which of the roots of a given function the iteration converges
to. [Sahari, M. and Djellit, I., 2006. Fractal Newton basins.
Discrete Dynamics in Nature and Society, 2006, pp.1-16.]

	Parameters

	
	func (sympy expression) – The function for which we want to plot fractal (single-
variable).

	prec_goal (float, optional) – Tolerance for how small the iteration step be relative
to the point to break the loop for that point i.e. if
relative difference of the iteration step and the point
is smaller than this value, it will stop the loop for
this point.

	nmax (int, optional) – Number of iterations to be run (default is 200).
Minimum recommended value is 50, but for some functions
may required over 500.

	
function

	The function for which the Newton Fractal is being
generated.

	Type

	fractpy.Function

	
roots_list

	Roots of the function.

	Type

	list

Example

To plot Newton Fractal for f(x) = x**4 - 2x**3 + 10 we first
make a model, and then plot it in required range and resolution:

>>> model = NewtonFractal("x**4 - 2x**3 + 10")
>>> p = model.plot(-2, 2, -2, 2, (200, 200))

Where p is an object of matplotlib.figure.Figure.

To make a plot which can be zoomed use model.zoom_plot().

See also

	fractpy.Function
	A class for performing basic calculus operations on a function (like finding roots).

	
plot(xstart, xend, ystart, yend, dim=(100, 100))

	Plots the fractal for given range and dimensions.

	Parameters

	
	xstart (float) – Lower limit of x-axis

	xend (float) – Upper limit of x-axis

	ystart (float) – Lower limit of y-axis

	yend (float) – Upper limit of y-axis

	dim (list of int, optional) – The dimensions of the plot to be generated (resolution
of the plot, width X height)(default is (100, 100)).

	Return type

	matplotlib.figure.Figure

	
zoom_plot(xstart, xend, ystart, yend, dim=(100, 100))

	Plots the fractal in two identical panels. Zooming in
on the right panel will show a rectangle in the first
panel, denoting the zoomed region.

	Parameters

	
	xstart (float) – Lower limit of x-axis

	xend (float) – Upper limit of x-axis

	ystart (float) – Lower limit of y-axis

	yend (float) – Upper limit of y-axis

	dim (list of int, optional) – The dimensions of the plot to be generated (resolution
of the plot, width X height)(default is (100, 100)).

	Return type

	matplotlib.figure.Figure

Index

 F
 | N
 | P
 | R
 | Z

F

 	
 	function (fractpy.models.newton.NewtonFractal attribute)

N

 	
 	NewtonFractal (class in fractpy.models.newton)

P

 	
 	plot() (fractpy.models.newton.NewtonFractal method)

R

 	
 	roots_list (fractpy.models.newton.NewtonFractal attribute)

Z

 	
 	zoom_plot() (fractpy.models.newton.NewtonFractal method)

 _static/minus.png

_static/plus.png

_static/howto_zoom_plot.gif

_static/tutorial.jpg
In nature: In geometry: In algebra:

_static/tutorial_plot.png
Newton Fractal for f(x) = x3 -1
-2 -1 0 1 2

_static/readme_plot.png
Newton Fractal for f(x) = x® — 4x3 + x2 — 6
-2 -1 0 1 2

_static/file.png

_images/tutorial_plot.png
Newton Fractal for f(x) = x3 -1
-2 -1 0 1 2

_static/howto_plot.png
Newton Fractal for f(x) = (x2 — 1)(x2 + 1)
-2 -1 0 1 2

nav.xhtml

 Table of Contents

 		
 Welcome to FractPy’s documentation!

 		
 Tutorial: Generating Newton Fractal for a simple function

 		
 Introduction to Fractal

 		
 Newton Fractal

 		
 Installing FractPy

 		
 Using FractPy

 		
 Creating a Model

 		
 Generating Fractal

 		
 How to

 		
 Create a Model

 		
 Create a Plot

 		
 Create a Zoom Plot

 		
 To Find the Derivative and the Roots

 		
 To Calculate Roots

 		
 To Find the Derivative:

 		
 Explanantion

 		
 Newton Fractal

 		
 Newton-Raphson Method of Finding Roots

 		
 Using Newton-Raphson Method for Generating Fractal

 		
 Algorithm used in the Code

 		
 Precautions

 		
 Reference

 		
 Bibliography

 		
 Source Code

 		
 Subpackages

 		
 Submodules

_images/howto_zoom_plot.gif

_images/tutorial.jpg
In nature: In geometry: In algebra:

_images/howto_plot.png
Newton Fractal for f(x) = (x2 — 1)(x2 + 1)
-2 -1 0 1 2

